Of Mice and Measurement Omission

Recommended Posts

The headline at Science Daily is "Mice master complex thinking with a remarkable capacity for abstraction."



Mice categorize surprisingly well

Sandra Reinert and Pieter Goltstein, together with Mark Hübener and Tobias Bonhoeffer, group leader and director at the Max Planck Institute of Neurobiology, studied how the brain stores abstract information like learned categories. Since this is difficult to investigate in humans, the scientists tested whether mice categorize in a way similar to us. To do so, they showed mice different pictures of stripe patterns and gave them a sorting rule. One animal group had to sort the pictures into two categories based on the thickness of the stripes, the other group based on their orientation. The mice were able to learn the respective rule and reliably sorted the patterns into the correct category. After this initial training phase, they even assigned patterns of stripes they had not seen before into the correct categories -- just like the child with the new book.

And not only that: when the researchers switched the sorting rules, the mice ignored what they had learned before and re-sorted the pictures according to the new rule -- something we humans do all the time while learning new things. Therefore, the study demonstrates for the first time to what extent and with which precision mice categorize and thereby approach our capacity for abstraction.

Neurons gradually develop a category representation

With this insight, the researchers were now able to investigate the basis of categorization in the mouse brain. They focused on the prefrontal cortex, a brain region which in humans is involved in complex thought processes. The investigations revealed that certain neurons in this area become active when the animals sort the striped patterns into categories. Interestingly, different groups of neurons reacted selectively to individual categories.

Tobias Bonhoeffer explains: "The discovery of category-selective neurons in the mouse brain was a key point. It allowed us for the first time to observe the activity of such neurons from the beginning to the end of category learning. This showed that the neurons don't acquire their selectivity immediately, but only gradually develop it during the learning process." [...]

Study details, link:

Sandra Reinert, Mark Hübener, Tobias Bonhoeffer, Pieter M. Goltstein. Mouse prefrontal cortex represents learned rules for categorization. Nature, 2021; DOI: 10.1038/s41586-021-03452-z

Link to comment
Share on other sites

45 minutes ago, william.scherk said:

This showed that the neurons don't acquire their selectivity immediately, but only gradually develop it during the learning process."

What would a starving human do for a loaf of bread? Take over the maze. like in a Twilight Zone episode.

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now